
Alwyn Goodloe

a.goodloe@nasa.gov
NASA Langley Research Center

Formal Methods Applied to
Safety-Critical Systems

NASA R&D in Formal Methods

• NASA Langley Research Center (LARC) - Safety
Critical Avionics Branch

• NASA Ames Research Center(ARC)– Robust
Software Engineering Group

• Jet Propulsion Laboratory (JPL/FFRDC) –
Laboratory for Reliable Software

• NASA Marshall Spaceflight Center, NASA Kennedy
Spaceflight Center, and NASA Johnson Spaceflight
Center have efforts applying model checking to
small projects, but I don’t discuss these

2

Focus of Talk

• LaRC efforts in formal methods will be focus of
today’s talk

• A brief overview of JPL efforts that may be of
interest to SDP

• ARC’s work was presented at recent SDP meeting
so I will mainly highlight collaborative efforts

• LaRC has historically targeted unltra-reliable safety-
critical systems in aerospace
– Heavily regulated

– Very long development times

– Safety trumps cost/time to deliver

3

NASA Langley

• LaRC created in 1917 as the first National Advisory
Committee for Aeronautics (NACA) research facility
– Located in Hampton, Virginia

• LaRC became a NASA lab in 1958
– The Mercury program begin at LaRC

• Research areas of concentrations: Aeronautics,
Atmospheric Sciences, and Exploration

• Formal methods research at LaRC is conducted in
the Safety-Critical Avionics Systems Brach of the
Research and Technology Directorate (RTD)

4

Ultra-Reliability is Hard

We are very good at building complex software systems that work 95%
of the time---but, we do not know how to build complex software
systems that are ultra-reliably safe.

What then has saved us in the past?
–minimal amount of software that is safety-critical
–simple designs
–enormously expensive verification and certification processes
– backups that are not software, e.g.:

° hardware interlocks
° human intervention

0

747-200
757/767

747-400

777All sectors of
aerospace are
increasingly relying
on software to
perform safety-
critical functions

Size and
Complexity

Branch Mission

Safety-Criticial Avionics Systems:

Research, create, and demonstrate new methodologies and tools for
designing, verifying, validating, and assuring high confidence
software-intensive systems to improve safety, reliability, and capacity
in mission- or life-critical aerospace systems

Analyzing Designs and Algorithms

• Avionics code is very conservative and testing far exceeds almost
any other software

– Buffer overflows are not the problem here

• Problems often stem from the physically possible, but logically
unanticipated

– How does software respond to unanticipated hardware failures

• LaRC has traditionally focused on design and algorithm analysis
rather than code

– More code analysis recently

• Many models involve continuous math

– Cannot just abstract this away

– Interactive theorem proving is often the only formal tool we can
use

• SMT solvers and model checkers used when appropriate

• Developing new decision procedures for nonlinear arithmetic

7

LaRC Early Pioneer

• Historically LaRC focus has been on formal
methods for analyzing avionics

• Safety-critical distributed systems

• In late 1970s there was a contract in place with SRI
International and Bendix to build a fault-tolerant
computer named SIFT: Software Implemented Fault
Tolerance

• And a second contract with SRI to formally prove
the SIFT operating system correct

8

SIFT Computer

• Reliability goal: 10-9

• 6 processors

• Fully-connected topology

• Fault-tolerant clock
synchronization

• Byzantine agreement
algorithm

• Delivered to NASA Langley
in 1981

• Contributers include: Jack

Goldberg, Chuck Weinstock, Karl
Levitt, Michael Melliar-Smith, Richard
Schwartz, Rob Shostak, Bob Boyer, J.
Moore, John Wensley, Leslie Lamport

Landmark Accomplishments

• Although the verification of the entire OS was overly
ambitious

• Some landmark accomplishments had been made:
– Fault-tolerant clock synchronization

– Byzantine Agreement

– An insightful problem decomposition:

• Prob[enough hardware] via Markov analysis

• Enough hardware  good answers

• Hierarchical decomposition
– Shostak decision procedures  EHDM prover  PVS

Later Recognized Successes:

• Rockwell Collins/SRI Verification of AAMP5/AAMP-FV Ps
(Srivas, Miller)

• Proved microcode of one instruction in each instruction class of
their new AAMP5

• Errors found:

• Discovered two errors during specification

• Proofs systematically uncovered two ``seeded'' errors

• There were four engineers at Collins that were skilled in formal
methods

• In fall 1996 Rockwell Collins hired a formal methods expert
whose full-time job is to integrate the use of formal methods into
their product lines

11

12

Honeywell Technology Center (Minneapolis)
with SRI International

GOAL: Develop and implement verification techniques for
demonstrating safety of IMA software using the DEOS
operating system as the test subject

Primus Epic

• DEOS is a partitioned real-time
operating system used in Honeywell’s
Primus Epic developed to DO-178B
Level A certification standards

• In parallel with the research tasks, the
verification integrated into the DEOS
certification process

13

• SPIDER: Scalable Processor-Independent Design for Electromagnetic

Resilience

• Built upon 20 years of fault tolerance research at LaRC

• Co-funded by FAA and NASA Langley

• Inhouse project

• GOALS: Develop fault-tolerant computer architecture in accordance with

RTCA DO-254 guidelines:

3
4

0
1

2

7

6

5

ROBu
s

– demonstrate feasibility of formal methods as

means of certification

– develop training materials for FAA

– develop advanced fault-tolerant computer

architecture platform for in-house analysis and

experimentation

14

SPIDER’S ELECTROMAGNETIC RESILIENCE

• Recovery from normal transients or permanent
faults is guaranteed by the formal design verification

• Lab testing confirms that the assumptions used in
the design and proofs are valid

• Recovery from massive upset is not guaranteed
mathematically, but

• PE’s can be restarted once the SPIDER ROBUS has recovered

• SPIDER ROBUS can be internally protected with shielding (small
size can help reduce weight)

15

Honeywell Engines and Systems
with TTTech and SRI International

GOAL: Develop Fault Tolerant Integrated Modular Architecture design,
validation, and implementation technologies for deployment in next-
generation engine controls for commercial aircraft

APPROACH: Use TTTech’s Time Triggered Architecture (TTA) developed
in Europe for the automotive industry and formal verification methods
(SRI) to develop a FTIMA architecture. Targeted application is Full
Authority Digital Engine Control (FADEC)

Time-Triggered Technology has been
developed over the past fifteen years
at Vienna University of Technology. It
was refined in co-operation with
leading industrial pacesetters.
Provides:

Composability

Predictable temporal behavior

Diagnosability and Testing

Reusability of Components

Fault-tolerance

Formal Models of Distributed Avionics

• Integrated analysis of TTEthernet using SAL model
checker and PVS (SRI)

• Architecture Analysis and Design Language (AADL)
models of synchronous and asynchronous systems
(Honeywell and WWTechnologies)
– Can we establish a basis for comparison

• Model based testing of distributed avionics systems
(Honeywell)

16

DO-178C Formal Methods Supplement

• FAA must certify aircraft before they are allowed to
fly

• RTCA standard DO-178C governs software

• New formal methods supplement allows the use of
formal methods in place of some, but not all, testing
– Approved by committee as DO-333

• LaRC engineers have played a critical role in
getting this approved

17

Expanding Portfolio

• In recent years we have added new people to the
group with new skill sets
– Model checking, SMT solving, static analysis, etc.

• Expanded the targeted application areas to include
– Airspace management

• Traditionally done by simulation

• FM and simulation people now working together

– Static code analysis

– New decision procedures

18

Generating Java Code From PVS

• LaRC has designed and proven correct a
considerable number of algorithms using SRI’s
Prototype Verification System (PVS)

• Customers often want executable prototypes

• LaRC has an ongoing effort to build a system that
translates a subset of PVS into Java
– Removes tail recursion

– Semantic attachments can replace PVS functions with
Java library calls

– Produces JML assertions and invariants from PVS spec
that can be used to verify the generated code

– Collaborative effort with ARC to generate test cases

19

Software Change Management Research

• Develop novel techniques to preserve and improve the
integrity of software as it changes over time

– Change impact analysis techniques generally estimate
program differences based on source level differences

• Results may over-estimate or under-estimate the effect
of changes because there is insufficient information to
accurately compute the impact of the change

20

What are the effects of
changing this code…

public boolean detection(Vect3 s, Vect3 vo, Vect3 vi,
double D, double H, double B, double T) {

t_in = 0;
t_out = 0;
if (T >= 0 && B >= T) return false;
Vect2 s2 = s.vect2();
Vect2 vo2 = vo.vect2();
Vect2 vi2 = vi.vect2();
double vz = vo.z-vi.z;
if (vo2.almostEquals(vi2) && Horizontal.almost_horizontal_los(s2,D)) {
if (!Util.almost_equals(vo.z,vi.z)) {
t_in = T < 0 ? Math.max(Vertical.Theta_H(s.z,vz,Entry,H),B) :
Math.min(Math.max(Vertical.Theta_H(s.z,vz,Entry,H),B),T);

t_out = T < 0 ? Math.max(Vertical.Theta_H(s.z,vz,Exit,H),B) :
Math.max(Math.min(Vertical.Theta_H(s.z,vz,Exit,H),T),B);

} else if (Vertical.almost_vertical_los(s.z,H)) {
t_in = B;
t_out = T;

}
} else {
Vect2 v2 = vo2.Sub(vi2);
if (Horizontal.Delta(s2,v2,D) > 0) {
double td1 = Horizontal.Theta_D(s2,v2,Entry,D);
double td2 = Horizontal.Theta_D(s2,v2,Exit,D);
if (!Util.almost_equals(vo.z,vi.z)) {
double tin = Math.max(td1,Vertical.Theta_H(s.z,vz,Entry,H));
double tout = Math.min(td2,Vertical.Theta_H(s.z,vz,Exit,H));
t_in = T < 0 ? Math.max(tin,B) : Math.min(Math.max(tin,B),T);
t_out = T < 0 ? Math.max(tout,B) : Math.max(Math.min(tout,T),B);

} else if (Vertical.almost_vertical_los(s.z,H)) {
t_in = T < 0 ? Math.max(td1,B) : Math.min(Math.max(td1,B),T);
t_out = T < 0 ? Math.max(td2,B) : Math.max(Math.min(td2,T),B);

}
}

}
return t_out < 0 || t_in < t_out;

}

…on how this operates?

Software Change Management Research

• Our approach: Use the results of inexpensive source code
differencing techniques to guide more precise techniques
to explore and characterize the impact of changes

– Goal: Avoid exploring unchanged program execution
behaviors to control analysis cost

• Differential Symbolic Execution (DSE): Use over-
approximating summaries of unchanged sections of code
when applying more precise techniques

• Directed Incremental Symbolic Execution (DiSE): “Prune”
the (symbolic) execution space when it does not contain
affected behaviors

21

Software Change Management Research

• Both techniques compute a summary of the affected
program behaviors

– Symbolic summaries characterize program behaviors in
terms of constraints on the program inputs

• Use decision procedures to analyze and compare
summaries

• Use summaries to direct more expensive software testing
and verification techniques to analyze the parts of the
program affected by the changes

22

Software Health Management

• Complexity of fielded systems means that it may not
be possible to exhaustively test and verify all
software

• Runtime verification (RV) - is a computing system
analysis and execution approach based on
extracting information from a running system and
using it to detect and possibly react to observed
behaviors satisfying or violating certain properties
– Properties often expressed in past-time temporal logic

– Very exciting area of research for formal methods
community

23

NASA Support for RV

• ARC has been a pioneer in the area

• JPL (Havelund) – Applying RV to robotic missions

• Research grants to support work in RV applied to
avionics
– UIUC (G. Rousu) – Monitoring-Oriented Programming

– SRI (J. Rushby) – Reliability via possibility perfect monitors

– Galois (L. Pike) – Sampling approach targeting hard real-
time

• Copilot Haskell EDSL

– RICAS (J. Shuman) – Baysian networks

24

NASA PVS Libraries

• LaRC maintains and develops an extensive library
of PVS theories

• Representative Examples:
– Basic Mathematics: algebra and trigonometry

– Not So Basic: logarithms, exponentials and hyperbolic

– Calculus: Series, Integration

– Discrete structures: arrays, sequences

– Probability

– Linear Algebra

• Aimed mainly at verification of safety-critical cyber-
physical systems
– Driven more by engineering applications than computer

science problems

25

Numerical Software Verification

• Floating point numbers are not real

– Approximation creates well-known anomalies

– Safety-critical numerical software needs to be built
carefully

• Deductive verification of numerical software

– In some cases, can prove absence of errors

– Otherwise, want to prove errors fall within bounds

– Verification often possible but usually difficult

• Research goals:

– Apply Bernstein polynomial techniques

– Develop tools and techniques to verify properties of
floating point computations

– Aim for high degree of automation

26

Non-Linear Arithmetic

• Heart Dipole Problem:

• P(x1,…,x8) = -x1x6
3+3x1x6x7

2-x3x7
3+3x3x7x6

2-x2x5
3+

3x2x5x8
2-x4x8

3+3x4x8x5
2-0.9563453

• x1∈[-0.1,0.4],x2∈[0.4,1], x3∈[-0.7,-0.4], x4∈[-0.7,-0.4],
x5∈[0.1,0.2], x6∈[-0.1,0.2], x7∈[-0.3,1.1], x8∈[-1.1,-
0.3]

• Theorem: ∀x: p(x1, …, x8) ≥ -1.7435

• Theorem: ∃x: p(x1,…,x8) ≤ -1.7434

27

Motivating Better Tools

• Inability to handle nonlinear arithmetic is a serious
issue with many formal methods tools (SMT
solvers, hybrid model-checking)

• Automatic verification of algorithms that compute
with real numbers

• Code-level verification of algorithms that compute
with floating-point numbers

• Verifying reliability and stability in control systems

28

Existing Approaches

• Existing approaches for verification of non-linear
arithmetic:
– Quantifier elimination

– Sum of squares

– Numerical approximation

• None of these can solve Heart-dipole problem
– Some not really practical efficiency wise

29

Bernstein

• A formal library in PVS for reasoning about (multivariate
polynomials)

• Based on Bernstein polynomials

• Numeric constants are operated on using infinite-precision
rational arithmetic

– All results produced are free from numerical representation
errors

– Bernstein's results carry the weight of rigorously proved
mathematical theorems.

• Proof strategies in PVS for automatically solving inequalities

• User friendly tools for formally solving global optimization

30

Kodiak

• A C++ library that implements Bernstein polynomial
using an infinite precision arithmetic library
(GiNaC/GMP)

• Intended for use in SMT solvers

• We are looking for for collaborators who wish to use
library
– May want to implement their own version

31

Aircraft Separation

• As part of congressional mandate, as part of Joint Planning
Development Office (JPDO) organization, NASA is
responsible for looking at futuristic ATM concepts

• NASA is looking at a variety of air traffic management
concepts to look at increasing capacity, efficiency, flexibility,
etc.

• More controllers will not be able to achieve big gains in these
parameters

• Everything that NASA is looking at has a significant role for
automation

• Often new uses for automation

• More automation doesn’t remove safety issues, but simply
shifts the risk from people to automation

• NASA is interested in new ways to analyze the safety of air
traffic automation

32

33

Self Separation Concept



Ground managed

Airborne managed

34

Separation and Automation

• Collision
– Scrape paint

– Avoid through pilot, controller, and TCAS

• Loss of Separation
– Separation standards are violated (5nmi,

1000ft)

– Avoid through human and/or automation
decisions

• Conflict
– Predicted loss of separation

35

Separation Algorithms

Conflict Detection
– Detect future loss of

separation

Conflict Resolution
– Suggest maneuvers to

avoid a conflict

?

Conflict Prevention
– Provide conflict-free

maneuvers

36

Trajectory Algorithms

Conflict Detection
– Detect future loss of

separation

Conflict Resolution
– Suggest maneuvers to

avoid a conflict

?
Conflict Prevention

– Provide conflict-free
maneuvers

37

Recovery Algorithms

Loss of Separation Recovery
– For a variety of reasons

separation may be lost

– Suggest a maneuver to regain
separation

Conflict Recovery
– Suggest maneuvers to

regain desired path

Research Goal

Develop a general formal framework for analysis
of safety properties of these algorithms

39

Conflict Resolution

• Each aircraft determines its own
set of six maneuvers
– Go right/left, Speed up/slow down,

Go up/down

• Properties
– Independence: free of conflicts if

one aircraft maneuvers

– Coordination: free of conflicts if
both aircraft maneuver

• Requirements
– No specific comm between aircraft

– No unfair rules: lower aircraft ID
goes first, etc.

Uh, oh…

40

Formal Statement of Properties
independent: THEOREM

precondition_ind?(s(a), s(b), v(a), v(b)) AND
(nva = cr3d_vertical_speed(a,b) OR
nva = cr3d_ground_speed(a,b) OR
nva = cr3d_heading(a,b)) AND

IMPLIES
NOT conflict?(s(a),s(b),nva-v(b))

coordinated: THEOREM
precondition_coord?(s(a), s(b), v(a), v(b)) AND
(nva = cr3d_vertical_speed(a,b) OR
nva = cr3d_ground_speed(a,b) OR
nva = cr3d_heading(a,b)) AND

(nvb = cr3d_vertical_speed(b,a) OR
nvb = cr3d_ground_speed(b,a) OR
nvb = cr3d_heading(b,a))

IMPLIES
NOT conflict?(s(a),s(b),nva-nvb)

41

Formal Verification of Coordination

Begin by splitting the problem into nine cases…

Vertical Ground Track

Vertical Tricky Easy Easy

Ground Easy Tricky Tricky

Track Easy Tricky Tricky

… then prove each one, for all encounter geometries.

Aircraft B

A
ir
c
ra

ft
 A

Algorithm Verification

How can we reuse these arguments?

42

Complex
verification that the
algorithm maintains
the safety
properties.

(CR3D)

ACCoRD Framework

Solution: ACCoRD – a verification framework for
classes of separation algorithms

43

Complex proof that criteria is
safe
-- provided by ACCoRD

(Hopefully)
straightforward
proofs that each
algorithm
satisfies the
criteria

Criteria is Very General

• The criteria was developed to aid the
verification process

• Criteria allows combinations of ground speed
and vertical speed.

– We have never looked at these algorithms before!

• But even more, if different algorithms satisfy
the criteria, then they will be coordinated with
each other

– Self-separation does not rely on everyone running
the same algorithm!

Using the Criteria

• Enables different airlines to fly different algorithms
– and algorithms can evolve over time

• Requires an international agreement
– Criteria embodies “rules of the road”

• Verification of individual algorithms easier
– Hard work has been done in criteria framework

– Need only prove that an algorithm satisfies the criteria

JPL Laboratory for Reliable Software

• JPL the engineers behind deep space robotic
missions
– Historically software built by domain experts

• Software bugs have caused a number of well
publicised incidents resulting in either a loss of
mission or near loss of mission

• LRS works to improve software engineering
practices used on critical mission functions

• Composed of researchers in formal methods and
software engineering

46

JPL Process

• A lab-wide coding standard focused on risk-related rules

– Automated compliance verification

• A software developer certification process

– Courses focused on SE principles and risk reduction

• A senior managers course, focused on software risk

• An emphasis on tool-based analysis (and not just people-
based)

– Including tool-based code review

– Based on strong static source code analysis

– Daily checks for coding-rule compliance

• Routine logic model checking for safety-critical parts of the
design

47

Power of 10 Rules

• Restrict to simple control flow constructs

• Do not use recursion and give all loops a fixed upper-bound

• Do not use dynamic memory allocation after initialization

• Limit functions to no more than ~60 lines of text

• Use minimally two assertions per function on average

• Declare data objects at the smallest possible level of scope

• Check the return value of non-void functions; check the
validity of parameters

• Limit the use of the preprocessor to file inclusion and simple
macros

• Limit the use of pointers

• Compile with all warnings enabled, and use source code
analyzers

48

Conclusion

• The safety-critical nature of aerospace systems
make them a natural target for FM

• NASA Langley has been a pioneer in this area
– Early research on fault-tolerance now in standard

textbooks

– Spurred use of formal methods by aerospace industry

• NASA Langley current focus on avionics and air
traffic management
– Areas where “good enough” is not good enough

– Heavy-weight formal methods often needed when dealing
with continuous math

• But new decision procedures can help us make progress

49

URL Pointers

• http://shemesh.larc.nasa.gov/fm/index.html

• Look under the research page for topics and you
should see pointers to papers
– The fault-tolerance and separation assurance sections on

the research page point to papers on those subjects

– For the work on Bernstein polynomials see César Muñoz’s
page

– For code difference papers see Suzette Person’s page

50

51

Questions?Questions?

